Tetracycline-regulated suppression of amber codons in mammalian cells.

نویسندگان

  • H J Park
  • U L RajBhandary
چکیده

As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS coding sequence attached to a minimal mammalian cell promoter was placed downstream of seven tandem tetracycline operator sequences. Cotransfection of HeLa cell lines expressing a tetracycline transactivator protein, carrying a tetracycline repressor domain linked to part of a herpesvirus VP16 activation domain, with the E. coli GlnRS gene and the E. coli glutamine-inserting amber suppressor tRNA gene resulted in suppression of the amber codon in a reporter chloramphenicol acetyltransferase gene. The tetracycline transactivator-mediated expression of E. coli GlnRS was essentially completely blocked in HeLa or COS-1 cells grown in the presence of tetracycline. Concomitantly, both aminoacylation of the suppressor tRNA and suppression of the amber codon were reduced significantly in the presence of tetracycline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.

We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Acti...

متن کامل

Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.

A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in m...

متن کامل

Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.

The universal genetic code includes three codons which signal polypeptide chain termination. These termination or nonsense codons are UAG (amber), UAA (ochre), and UGA (opal). Usually, Escherichia coli and other procaryotic cells do not contain transfer ribonucleic acids (tRNAs) which recognize these codons. However, such tRNAs can be created by suppressor mutations in tRNA genes, generating tR...

متن کامل

An amber suppressor tRNA gene derived by site-specific mutagenesis: cloning and function in mammalian cells.

We describe the synthesis, cloning, expression, and in vivo function of a suppressor tRNA gene in mammalian cells. By using "primer-directed mutagenesis" on a Xenopus laevis tyrosine tRNA gene cloned into the recombinant single-strand phage M13mp5, we have generated an amber suppressor tRNA gene that has a nucleotide change--GTA leads to CTA--in the anticodon sequence. The suppressor (Su) tRNA ...

متن کامل

Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins.

A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl-tRNA s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 1998